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CONJUGACY CLASSES OF
MAXIMAL NILPOTENT SUBGROUPS

BY
HANS LAUSCH

ABSTRACT

It is shown that in an arbitrary finite group G, any two maximal nilpotent
subgroups of G whose intersection contains its own centralizer in G, are
conjugate in G.

NotaTiON. Let G be a group.
Maxn(G)={V:V =G, V is nilpotent, and V< W = G implies
that W is not nilpotent};
B:(G)={B:B = G, B is nilpotent of class at most 2};
e:(G)=max{|B|: B € B,(G)};
AxG)={B:B € By(G) and |B| = e,(G))}.
If G is nilpotent, then G, will denote the Sylow p-subgroup of G, and G,
its p-complement in G.

PropoSITION 1. Let G be a group, Cc(B)=B <G, X € Maxy(G), X = B,
and F the Fitting subgroup of G. Then X contains F.

CoroLLARY 1. Let G be a group, Co(B)=B<G, X, Y €Maxn(G), and
XNY=ZB. Then X and Y are conjugate in G.

PrROOF. Let p#q be primes. Then [F,, X;]=[Cs(B,),Cs(B,)]=
Co(B,)N Cs(B,)=Cs(B)=B as B<G. Hence F, = Ns(BX,) and, since
BX, = X, it follows that F, = Ng(X,). Consequently, F, = Cs(X,); therefore
XF, is nilpotent, and as X € Maxn(G), F, = X, for all primes p. Hence F = X,
which proves the proposition. As Cg (F) = Cg(B) = B = F, the main result of [4]
applies, i.e., any two subgroups X, Y € Maxx(G) which contain B — and by
Proposition 1 therefore contain F — are conjugate in G. This proves the
corollary.
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PROPOSITION 2. Let G be a group, Ca(B)= B =G, XY €Maxn(G), and
XNY=z=B. Then X and Y are conjugate in G.

ProoOF (P. Forster). Let G be a counterexample to Proposition 2 of
minimal order and suppose that X and Y are not conjugate in G. With-
out loss of generality we may assume that | X N Y|=max{| X*N Y*|: X*,
Y*EMaxn(G), X* N Y* z B, and X* and Y* are not conjugate in G}. We put
D=XNY N=Ns(D), Xo=Nx(D), Yo= Ny (D). If D = X, then the nilpo-
tency of X implics X =D =Y, hence X =Y, a contradiction. Therefore
D < X, and likewise D < Y,. If N=G, then D <G, but Cs(D)=Cs(B)=
B = D so that by the corollary of Proposition 1, X and Y would be conjugate in
G, again a contradiction. Therefore N < G. We choose X, Y, € Maxn(N) such
that Xo = X, Yo = Y. The choice of G ensures that there exists n € N such that
X, =Y! Let X;&Maxa(G) such that X, = X,. Then Y'"NX,2zYs>D" =
D =XNY=B, in particular [ Y" N X.|>|X N Y| and Y" N X,= B. There-
fore Y™ =X, forsome g € G. But Y* N X2 X,>D=XNY=zB, so again
[Y® N X|>]XNYland Y™ N X = B implies that Y™ and X are conjugate in
G. Hence X and Y are conjugate in G. This proves Proposition 2.

As an application of Proposition 2, we give a short proof of a result credited to
Bender which can be found in [1]. Proposition 2 permits us to use the following
result by Glauberman ([3]) more efficiently than in [1}: Let G be a group,
B € A:(G), X =G, X nilpotent, and B = Ng(X). Then BX is nilpotent.

ProposiTioNn 3. Let G be a group, F its Fitting subgroup, Co(F)=F, and
X €Maxn(G). Then X = F if and only if there exists B € A,(G) such that
XzB.

ProOF. We note that if B € A.(G), then Cs(B)= B. Suppose X = B for
some B & A,(G). By [3]. BF is nilpotent, therefore BF=Y for some
Y € Maxn(G). Hence X N Y = B, so by Proposition 2, Y* = X forsome g € G.
Therefore X = F.

Conversely (see [1]), if X = F and B € A,(G), BF is again nilpotent by [3], so
BF = Y forsome Y € Max~(G). Hence X N'Y = F, and [4] (or our Proposition
2) implies Y* = X for some g € G. Therefore X =z B* with B® € A,(G).

Bialostocki conjectured in [2] that if G is a group, X, Y €Maxn{(G),
Bx,By € Ay(G) and Bx =X, By = Y, then X and Y are conjugate in G. We
state another conjecture which implies Bialostocki’s conjecture.

ConsecTure. If G is a group, B, B* € Ax(G), then there exists g € G such
that (B*, B®) is nilpotent.



Vol. 47, 1984 MAXIMAL NILPOTENT SUBGROUPS 31

Suppose this conjecture is true, then there exists g € G such that (Bx, B%) is
nilpotent. Let Z €Maxn(G) with Z =(Bx,B¥), then ZN X zZBx. ZNY*=

%, hence by Proposition 2, Z is a conjugate of X and of Y*, so Bialostocki's
conjecture would be true.
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