

CONJUGACY CLASSES OF MAXIMAL NILPOTENT SUBGROUPS

BY
HANS LAUSCH

ABSTRACT

It is shown that in an arbitrary finite group G , any two maximal nilpotent subgroups of G whose intersection contains its own centralizer in G , are conjugate in G .

NOTATION. Let G be a group.

$\text{Max}_N(G) = \{V : V \leq G, V \text{ is nilpotent, and } V < W \leq G \text{ implies that } W \text{ is not nilpotent}\};$

$B_2(G) = \{B : B \leq G, B \text{ is nilpotent of class at most 2}\};$

$e_2(G) = \max\{|B| : B \in B_2(G)\};$

$A_2(G) = \{B : B \in B_2(G) \text{ and } |B| = e_2(G)\}.$

If G is nilpotent, then G_p will denote the Sylow p -subgroup of G , and G_p' its p -complement in G .

PROPOSITION 1. Let G be a group, $C_G(B) \leq B \triangleleft G$, $X \in \text{Max}_N(G)$, $X \geq B$, and F the Fitting subgroup of G . Then X contains F .

COROLLARY 1. Let G be a group, $C_G(B) \leq B \triangleleft G$, $X, Y \in \text{Max}_N(G)$, and $X \cap Y \geq B$. Then X and Y are conjugate in G .

PROOF. Let $p \neq q$ be primes. Then $[F_p, X_q] \leq [C_G(B_p), C_G(B_p)] \leq C_G(B_p) \cap C_G(B_p) = C_G(B) \leq B$ as $B \triangleleft G$. Hence $F_p \leq N_G(BX_q)$ and, since $BX_q \leq X$, it follows that $F_p \leq N_G(X_q)$. Consequently, $F_p \leq C_G(X_q)$; therefore XF_p is nilpotent, and as $X \in \text{Max}_N(G)$, $F_p \leq X$, for all primes p . Hence $F \leq X$, which proves the proposition. As $C_G(F) \leq C_G(B) \leq B \leq F$, the main result of [4] applies, i.e., any two subgroups $X, Y \in \text{Max}_N(G)$ which contain B — and by Proposition 1 therefore contain F — are conjugate in G . This proves the corollary.

Received August 10, 1983

PROPOSITION 2. *Let G be a group, $C_G(B) \leq B \leq G$, $X, Y \in \text{Max}_N(G)$, and $X \cap Y \geq B$. Then X and Y are conjugate in G .*

PROOF (P. Förster). Let G be a counterexample to Proposition 2 of minimal order and suppose that X and Y are not conjugate in G . Without loss of generality we may assume that $|X \cap Y| = \max\{|X^* \cap Y^*| : X^*, Y^* \in \text{Max}_N(G), X^* \cap Y^* \geq B$, and X^* and Y^* are not conjugate in G . We put $D = X \cap Y$, $N = N_G(D)$, $X_0 = N_X(D)$, $Y_0 = N_Y(D)$. If $D = X_0$, then the nilpotency of X implies $X = D \leq Y$, hence $X = Y$, a contradiction. Therefore $D < X_0$ and likewise $D < Y_0$. If $N = G$, then $D \triangleleft G$, but $C_G(D) \leq C_G(B) \leq B \leq D$ so that by the corollary of Proposition 1, X and Y would be conjugate in G , again a contradiction. Therefore $N < G$. We choose $X_1, Y_1 \in \text{Max}_N(N)$ such that $X_0 \leq X_1$, $Y_0 \leq Y_1$. The choice of G ensures that there exists $n \in N$ such that $X_1 = Y_1^n$. Let $X_2 \in \text{Max}_N(G)$ such that $X_1 \leq X_2$. Then $Y^n \cap X_2 \geq Y_0^n > D^n = D = X \cap Y \geq B$, in particular $|Y^n \cap X_2| > |X \cap Y|$ and $Y^n \cap X_2 \geq B$. Therefore $Y^{n^g} = X_2$ for some $g \in G$. But $Y^{n^g} \cap X \geq X_0 > D = X \cap Y \geq B$, so again $|Y^{n^g} \cap X| > |X \cap Y|$ and $Y^{n^g} \cap X \geq B$ implies that Y^{n^g} and X are conjugate in G . Hence X and Y are conjugate in G . This proves Proposition 2.

As an application of Proposition 2, we give a short proof of a result credited to Bender which can be found in [1]. Proposition 2 permits us to use the following result by Glauberman ([3]) more efficiently than in [1]: Let G be a group, $B \in A_2(G)$, $X \leq G$, X nilpotent, and $B \leq N_G(X)$. Then BX is nilpotent.

PROPOSITION 3. *Let G be a group, F its Fitting subgroup, $C_G(F) \leq F$, and $X \in \text{Max}_N(G)$. Then $X \geq F$ if and only if there exists $B \in A_2(G)$ such that $X \geq B$.*

PROOF. We note that if $B \in A_2(G)$, then $C_G(B) \leq B$. Suppose $X \geq B$ for some $B \in A_2(G)$. By [3], BF is nilpotent, therefore $BF \leq Y$ for some $Y \in \text{Max}_N(G)$. Hence $X \cap Y \geq B$, so by Proposition 2, $Y^g = X$ for some $g \in G$. Therefore $X \geq F$.

Conversely (see [1]), if $X \geq F$ and $B \in A_2(G)$, BF is again nilpotent by [3], so $BF \leq Y$ for some $Y \in \text{Max}_N(G)$. Hence $X \cap Y \geq F$, and [4] (or our Proposition 2) implies $Y^g = X$ for some $g \in G$. Therefore $X \geq B^g$ with $B^g \in A_2(G)$.

Bialostocki conjectured in [2] that if G is a group, $X, Y \in \text{Max}_N(G)$, $B_X, B_Y \in A_2(G)$ and $B_X \leq X$, $B_Y \leq Y$, then X and Y are conjugate in G . We state another conjecture which implies Bialostocki's conjecture.

CONJECTURE. If G is a group, $B, B^* \in A_2(G)$, then there exists $g \in G$ such that $\langle B^*, B^g \rangle$ is nilpotent.

Suppose this conjecture is true, then there exists $g \in G$ such that $\langle B_X, B_Y^g \rangle$ is nilpotent. Let $Z \in \text{Max}_N(G)$ with $Z \geq \langle B_X, B_Y^g \rangle$, then $Z \cap X \geq B_X$, $Z \cap Y^g \geq B_Y^g$, hence by Proposition 2, Z is a conjugate of X and of Y^g , so Bialostocki's conjecture would be true.

REFERENCES

1. Z. Arad and D. Chillag, *Injectors of finite solvable groups*, Commun. Algebra 7(2) (1979), 115–138.
2. A. Bialostocki, *Nilpotent injectors in symmetric groups*, Isr. J. Math. 41 (1982), 261–273.
3. G. Glauberman, *On Burnside's other p^nq^m theorem*, Pacific J. Math. 56 (1975), 469–476.
4. A. Mann, *Injectors and normal subgroups of finite groups*, Isr. J. Math. 9 (1971), 554–558.

DEPARTMENT OF MATHEMATICS
MONASH UNIVERSITY
CLAYTON, VICTORIA 3168, AUSTRALIA